Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Niger J Physiol Sci ; 38(2): 195-200, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38696689

RESUMO

Acute caffeine exposure had been shown to induce hyperglycemia however; the influence of thyroid hormones on the caffeine-induced hyperglycemia is yet to be established. The present study was therefore designed to investigate the effect of caffeine exposure on blood glucose and hepatic glycogen content in thyroidectomized rats. Sixty adult male Wistar rats were randomly divided into 10 groups as I-X (n=6).  Rats in groups I, III, V, VII and IX were given normal saline, caffeine, prazosin + caffeine, propranolol +caffeine, combined prazosin+ propranolol+caffeine injections respectively while rats in groups  II, IV, VI, VIII and X were thyroidectomized  and treated in similar manner as the normal rats respectively. Surgical removal of the thyroid gland was done in the thyroidectomised groups while sham-operation was done in Normal group to serve as control. After healing and following an overnight fast, the rats were anaesthetized and the femoral vein and carotid artery were cannulated for drug administration and blood glucose measurement respectively. After stabilization, following basal measurements, rats from each group were injected normal saline or caffeine (6mg/kg) while another sets were pre-treated prazosin (0.2 mg/kg), propanolol (0.5 mg/kg) or their combination before caffeine administration. Blood glucose was then monitored for 60 minutes post-injection of caffeine at 5 minutes interval. Liver samples were collected at the end of the observation period for glycogen content determination. Caffeine caused significant increased blood glucose levels in both normal and thyroidectomized rats which were up to 210% and 180% respectively at the peak of their responses. Liver glycogen content of the thyroidectomized rats (3.11 ± 0.20 mg/100g tissue weight) was significantly higher than the normal rats (1.91 ± 0.43 mg/100g tissue weight). These glycogen contents were significantly reduced by caffeine in both normal (0.25 ± 0.04 mg/100g tissue weight) and thyroidectomized rats (1.65 ± 0.16 mg/100g tissue weight) when compared with their controls. The caffeine effects on blood glucose and hepatic glycogen content were abolished by pretreatment with propanolol or a combination of prazosin and propanolol in both normal and thyroidectomized rats but pretreatment with prazosin caused only significant reduction in hyperglycemic response to caffeine. The findings of this study suggest that caffeine-induced hyperglycemia in both normal and thyroidectomized rats are mediated through both alpha and beta adrenoceptors.


Assuntos
Glicemia , Cafeína , Glicogênio Hepático , Ratos Wistar , Tireoidectomia , Animais , Masculino , Cafeína/farmacologia , Cafeína/administração & dosagem , Cafeína/toxicidade , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Glicogênio Hepático/metabolismo , Ratos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Prazosina/farmacologia , Propranolol/farmacologia , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Glicogênio/metabolismo
2.
J Pharmacopuncture ; 25(3): 209-215, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36186095

RESUMO

Objectives: Aqueous leaf extract of Tridax procumbens (ALETP) has potent relaxant activity. However, this relaxant activity in respiratory smooth muscle remains uninvestigated. This study investigates the effect of ALETP on the contractile activity of tracheal smooth muscle (TSM) in adult male Wistar rats. Methods: Twelve male Wistar rats divided into 2 groups and were treated with either 100 mg/kg of ALETP (ALETP treatment group) or vehicle (distilled water; control group) through oral gavage for 4 weeks. Dose responses of TSM from the 2 groups to acetylcholine (10-9 to 10-5 M), phenylephrine (10-9 to 10-5 M), and potassium chloride (KCl; 10-9 to 10-4 M) were determined cumulatively. Furthermore, cumulative dose responses to acetylcholine (10-9 to 10-5 M) after pre-incubation of TSM with atropine (10-5 M), L-NAME (10-4 M), indomethacin (10-4 M), and nifedipine (10-4 M), were determined. Results: Treatment with ALETP substantially inhibited TSM contraction stimulated by cumulative doses of acetylcholine, phenylephrine, and KCl. Furthermore, preincubation of TSM from the 2 groups in atropine significantly inhibited contractility in TSM. Incubation in L-NAME and indomethacin also significantly inhibited contractility in TSM of ALETP-treated rats compared to that of controls. Contractile activity of the TSM was also inhibited significantly with incubation in nifedipine in ALETP-treated rats. Conclusion: ALETP enhanced relaxant activity in rat TSM primarily by blocking the L-type calcium channel and promoting endothelial nitric oxide release. ALETP contains agents that may be useful in disorders of the respiratory tract.

3.
J Diabetes Metab Disord ; 20(2): 1257-1267, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34900777

RESUMO

PURPOSE: The antidiabetic activities of Ocimum gratissimum (OG) leaf extract are well documented in experimental diabetes induced by beta cell destruction resulting in hypoinsulinemia. There is however paucity of data on its effect in conditions characterized by hyperinsulinemia. This study therefore investigated the effect of OG on insulin resistance induced by dexamethasone in male Wistar rats. METHOD: Twenty male Wistar rats grouped as control, normal + OG, Dex and Dex + OG were used. Control and normal + OG received normal saline while Dex and Dex + OG received dexamethasone (1 mg/kg, i.p) followed by distilled water or OG (400 mg/kg) for 10 days. Levels of fasting blood glucose (FBG), insulin, HOMA-IR, liver and muscle glycogen, hexokinase activities, hepatic HMG CoA reductase activity were obtained. Histopathology of pancreas and liver tissues was carried out using standard procedures. RESULTS: Body weight reduced significantly in the Dex and Dex + OG groups compared with the control. FBG (147.8 ± 9.93 mg/dL), insulin (2.98 ± 0.49 µIU/ml) and HOMA-IR (1.11 ± 0.22) of Dex animals were higher than the control (FBG = 89.22 ± 6.53 mg/dL; insulin = 1.70 ± 0.49 µIU/ml; HOMA-IR = 0.37 ± 0.04). These were significantly reduced in the Dex + OG (FBG = 115.31 ± 5.93 mg/dL; insulin = 1.85 ± 0.11µIU/ml; HOMA-IR = 0.53 ± 0.08) compared with Dex. Glycogen content and hexokinase activities were increased in the Dex + OG. Increased pancreatic islet size, hepatic steatosis and HMG Co A reductase activity were observed in the Dex but reduced in Dex + OG. CONCLUSION: OG promotes cellular glucose utilization and reduces hepatic fat accumulation in Wistar rats with insulin resistance induced by dexamethasone. Further study to identify the involved signal transduction will throw more light on the observed effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...